117 research outputs found

    High sensitivity tests of the Pauli Exclusion Principle with VIP2

    Get PDF
    The Pauli Exclusion Principle is one of the most fundamental rules of nature and represents a pillar of modern physics. According to many observations the Pauli Exclusion Principle must be extremely well fulfilled. Nevertheless, numerous experimental investigations were performed to search for a small violation of this principle. The VIP experiment at the Gran Sasso underground laboratory searched for Pauli-forbidden X-ray transitions in copper atoms using the Ramberg-Snow method and obtained the best limit so far. The follow-up experiment VIP2 is designed to reach even higher sensitivity. It aims to improve the limit by VIP by orders of magnitude. The experimental method, comparison of different PEP tests based on different assumptions and the developments for VIP2 are presented.Comment: 6 pages, 3 figures, Proceedings DISCRETE2014 Conferenc

    Shedding New Light on Kaon-Nucleon/Nuclei Interaction and Its Astrophysical Implications with the AMADEUS Experiment at DAFNE

    Get PDF
    The AMADEUS experiment deals with the investigation of the low-energy kaon-nuclei hadronic interaction at the DA{\Phi}NE collider at LNF-INFN, which is fundamental to respond longstanding questions in the non-perturbative QCD strangeness sector. The antikaon-nucleon potential is investigated searching for signals from possible bound kaonic clusters, which would open the possibility for the formation of cold dense baryonic matter. The confirmation of this scenario may imply a fundamental role of strangeness in astrophysics. AMADEUS step 0 consisted in the reanalysis of 2004/2005 KLOE dataset, exploiting K- absorptions in H, 4He, 9Be and 12C in the setup materials. In this paper, together with a review on the multi-nucleon K- absorption and the particle identification procedure, the first results on the {\Sigma}0-p channel will be presented including a statistical analysis on the possible accomodation of a deeply bound stateComment: 6 pages, 2 figure, 1 table, HADRON 2015 conferenc

    Testing the Pauli Exclusion Principle for Electrons

    Full text link
    One of the fundamental rules of nature and a pillar in the foundation of quantum theory and thus of modern physics is represented by the Pauli Exclusion Principle. We know that this principle is extremely well fulfilled due to many observations. Numerous experiments were performed to search for tiny violation of this rule in various systems. The experiment VIP at the Gran Sasso underground laboratory is searching for possible small violations of the Pauli Exclusion Principle for electrons leading to forbidden X-ray transitions in copper atoms. VIP is aiming at a test of the Pauli Exclusion Principle for electrons with high accuracy, down to the level of 1029^{-29} - 1030^{-30}, thus improving the previous limit by 3-4 orders of magnitude. The experimental method, results obtained so far and new developments within VIP2 (follow-up experiment at Gran Sasso, in preparation) to further increase the precision by 2 orders of magnitude will be presented.Comment: Proceedings DISCRETE 2012-Third Symposium on Prospects in the Physics of Discrete Symmetries, Lisbon, December 3-7, 201

    Unprecedented studies of the low-energy negatively charged kaons interactions in nuclear matter by AMADEUS

    Get PDF
    The AMADEUS experiment aims to provide unique quality data of KK^- hadronic interactions in light nuclear targets, in order to solve fundamental open questions in the non-perturbative strangeness QCD sector, like the controversial nature of the Λ(1405)\Lambda(1405) state, the yield of hyperon formation below threshold, the yield and shape of multi-nucleon KK^- absorption, processes which are intimately connected to the possible existence of exotic antikaon multi-nucleon clusters. AMADEUS takes advantage of the DAΦ\PhiNE collider, which provides a unique source of monochromatic low-momentum kaons and exploits the KLOE detector as an active target, in order to obtain excellent acceptance and resolution data for KK^- nuclear capture on H, 4{}^4He, 9{}^{9}Be and 12{}^{12}C, both at-rest and in-flight. During the second half of 2012 a successful data taking was performed with a dedicated pure carbon target implemented in the central region of KLOE, providing a high statistic sample of pure at-rest KK^- nuclear interactions. For the future dedicated setups involving cryogenic gaseous targets are under preparation.Comment: 14 pages, 6 figure

    Searches for the Violation of Pauli Exclusion Principle at LNGS in VIP(-2) experiment

    Get PDF
    The VIP (Violation of Pauli exclusion principle) experiment and its follow-up experiment VIP-2 at the Laboratori Nazionali del Gran Sasso (LNGS) search for X-rays from Cu atomic states that are prohibited by the Pauli Exclusion Principle (PEP). The candidate events, if they exist, will originate from the transition of a 2p2p orbit electron to the ground state which is already occupied by two electrons. The present limit on the probability for PEP violation for electron is 4.7 ×1029\times10^{-29} set by the VIP experiment. With upgraded detectors for high precision X-ray spectroscopy, the VIP-2 experiment will improve the sensitivity by two orders of magnitude.Comment: 5 pages, 3 figures, 1 table. Conference proceedings for oral presentation at TAUP 2015, Torin

    Strong interaction studies with kaonic atoms

    Get PDF
    The strong interaction of antikaons (K-) with nucleons and nuclei in the low energy regime represents an active research field connected intrinsically with few-body physics. There are important open questions like the question of antikaon nuclear bound states - the prototype system being K-pp. A unique and rather direct experimental access to the antikaon-nucleon scattering lengths is provided by precision X-ray spectroscopy of transitions in low-lying states of light kaonic atoms like kaonic hydrogen isotopes. In the SIDDHARTA experiment at the electron-positron collider DA?NE of LNF-INFN we measured the most precise values of the strong interaction observables, i.e. the strong interaction on the 1s ground state of the electromagnetically bound K-p atom leading to a hadronic shift and a hadronic broadening of the 1s state. The SIDDHARTA result triggered new theoretical work which achieved major progress in the understanding of the low-energy strong interaction with strangeness. Antikaon-nucleon scattering lengths have been calculated constrained by the SIDDHARTA data on kaonic hydrogen. For the extraction of the isospin-dependent scattering lengths a measurement of the hadronic shift and width of kaonic deuterium is necessary. Therefore, new X-ray studies with the focus on kaonic deuterium are in preparation (SIDDHARTA2). Many improvements in the experimental setup will allow to measure kaonic deuterium which is challenging due to the anticipated low X-ray yield. Especially important are the data on the X-ray yields of kaonic deuterium extracted from a exploratory experiment within SIDDHARTA.Comment: Proc. Few Body 21, 4 pages, 2 figure

    Precision X-ray spectroscopy of kaonic atoms as a probe of low-energy kaon-nucleus interaction

    Full text link
    In the exotic atoms where one atomic 1s1s electron is replaced by a KK^{-}, the strong interaction between the KK^{-} and the nucleus introduces an energy shift and broadening of the low-lying kaonic atomic levels which are determined by only the electromagnetic interaction. By performing X-ray spectroscopy for Z=1,2 kaonic atoms, the SIDDHARTA experiment determined with high precision the shift and width for the 1s1s state of KpK^{-}p and the 2p2p state of kaonic helium-3 and kaonic helium-4. These results provided unique information of the kaon-nucleus interaction in the low energy limit.Comment: 4 pages, 1 figure, proceedings for oral presentation at the ICNFP2015 conference, Kolymbari, Cret

    KK-series X-ray yield measurement of kaonic hydrogen atoms in a gaseous target

    Full text link
    We measured the KK-series X-rays of the KpK^{-}p exotic atom in the SIDDHARTA experiment with a gaseous hydrogen target of 1.3 g/l, which is about 15 times the ρSTP\rho_{\rm STP} of hydrogen gas. At this density, the absolute yields of kaonic X-rays, when a negatively charged kaon stopped inside the target, were determined to be 0.0120.003+0.004^{+0.004}_{-0.003} for KαK_{\alpha} and 0.0430.011+0.012^{+0.012}_{-0.011} for all the KK-series transitions KtotK_{tot}. These results, together with the KEK E228 experiment results, confirm for the first time a target density dependence of the yield predicted by the cascade models, and provide valuable information to refine the parameters used in the cascade models for the kaonic atoms.Comment: 9 pages, 5 figures. Submitted to Nuclear Physics A, Special Issue on Strangeness and Char
    corecore